

## Sustainability through Chemical Selection along Footwear and Apparel Value Chain

## Dr. Dieter Sedlak Modern Testing Services Global Hong Kong, March 2010



### The "Environmental Targets" within Sustainability

#### Product life cycle view:

- . Raw materials
- . Factory operations
- Transportation
- . Use and disposal
- All impacts from chemicals use
  - . Air, water, soil
  - . CO2 emissions
  - . Waste
    - Health



# Important aspects for the assessment of sustainable chemistry

- <sup>7</sup> Selection of appropriate assessment baseline metrics
  - . Environmental impact in g chemical/kg product
  - . Energy consumption in MJ/kg product
  - . Specific consumption in g or I/kg product
- <sup>"</sup>Balance between collecting data and data set use
- Transparent reporting of results
- Application to all products (needed update)
- Must set priorities and cut-off criteria
- " IT tool to calculate accumulated numbers



# Possible instruments to build up sustainable products and related processes

- RSL concept for consumer safety
  - . Provides clear instructions for product requirements
  - . Implementation challenges
  - Poor consideration of factory related aspects
- "Life cycle analysis . time consuming, expensive, internally challenging
- " Regulations such as REACh . complex and slow



#### **Basic Elements for Process and Product Assessments**

<sup>7</sup> Factory environmental impact (chemical and textile)

#### Emissions

- " Air = g carbon or substance/kg product
- " Wastewater = g TOC or substance/kg product
- " Energy and CO2 emission factors in MJ/kg or g/kg product

#### . Consumption and waste

- " Consumption factors for water, energy and chemicals
- " Generation of waste per kg of product
- Consumer and associated environmental impact

Residual/releasable chemicals in mg/kg product



#### **Two Successful Examples:**

## Resulting in reduced impact to environment and consumer

- " Synthetic Leather Manufacturing
- Oil and water repellent fabric and garment manufacturing



#### **Synthetic Leather – Prior Situation**

- " PVC based . chlorine chemistry, energy, waste
- Solvent based PU's . reproductive toxic solvents
- " Toxic catalysts and additives (plasticizers)
- Partly instable PU's and crosslinkers decompose during any heat application
- These chemicals and materials pose potential risks to factory workers, environment and consumer



#### **Synthetic Leather – New Situation**

- " Enhanced knowledge on chemical risks
- Problematic organic solvents replaced by water
- Organotin catalysts replaced by harmless substitutes
- " Remove lead and cadmium based pigments
- Plasticizers avoided through smart PU backbone design
- APEO as emulsifier replaced by biodegradable substitute



#### Major advantages for manufacturing and consumer

- . Minimized occupational health issues for factory workers from solvents
- Reduced process emissions to ambient air and avoidance of cost intensive off gas treatment
- . Improved waste water quality
- . Minimized residual solvents in synthetic leather avoiding RSL conflicts
- . Eliminated risks from thermal decomposition of any PU coated materials
- . Significantly reduced risks from sensitizing additives



#### **Oil and water repellent fabrics – prior situation**

- <sup>"</sup> Use of emulsifiers such as PFOS and PFOA
- High residual fluorinated telomers and monomers from polymerization
- Organotin catalysts
- "High solvents content
- Crosslinkers not fully reacted may release toxic decomposition products during ironing
- <sup>"</sup> Residuals from these chemicals pose potential risks to factory workers, environment and consumer



#### **Oil and water repellent fabrics – new situation**

- <sup>"</sup> Enhanced fluorochemicals products due to improved synthesis knowledge and care. C6 technology
- "PFOS and PFOA replaced or minimized as impurity
- "Residual fluorotelomers significantly reduced
- Organic solvents predominantly replaced by water with biodegradable emulsifiers
- Substitution of organotin catalysts



#### Major advantages for manufacturing and consumer

- . Minimized occupational exposures for factory workers
- . Minimized process emissions to ambient air
- . Eliminate PFOA or PFOS release to factory and consumer environment
- . Reduced wastewater loading from non biodegradable ingredients and heavy metals
- . Minimized residual solvents, telomers and other impurities in apparel avoiding RSL conflicts
- . Contribution to lower energy, water and detergent consumption from reduced laundry cycles



Modern Testing Services (Germany) GmbH

## Further examples for sustainable chemistry minimizing costs and risks in whole value chain

- . Elimination of carcinogenic azodyes and sensitizing disperse dyes . workers and consumer
- . Environment and consumer friendly carrier dyeing
- . Thermostable and biodegradable synthetics manufacturing lubricants (global release to air and water around 500,000 t/a of mainly hydrocarbons)
- . Low emission textile auxiliaries and colorants (- 90 % to air)
- . APEO free detergents, textile auxiliaries and colorants
- . Formaldehyde low resins and gas heated stenters
- . Phthalates alternatives for screen prints and polymers



### **Thank You**

# Together we can enhance sustainable chemistry through technology

#### Dr. Dieter Sedlak Managing Director

Modern Testing Services Germany Modern Testing Services Global, Hong Kong