

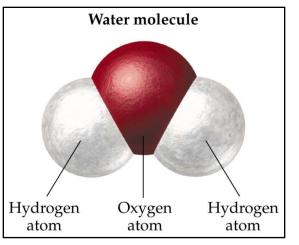
AFIRM Chemical Guidance Document

Phil Patterson Colour Connections Consultancy Itd (Restricted Substance Advisor to <u>Pentland Brands</u>)

AFIRM Seminar, Vietnam

13th November 2014

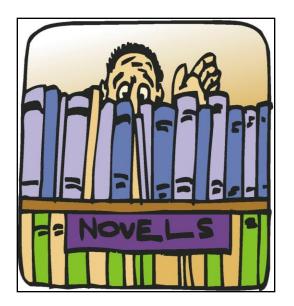
The Author


Dr Dieter Sedlak

A world renowned chemical expert

A highly valued advisor to the footwear and apparel sector

It's not a chemistry lesson!


My Job: To tell you what is in the document

You don't need to understand the detailed chemistry but

you need to understand the importance of chemical detail

The Document

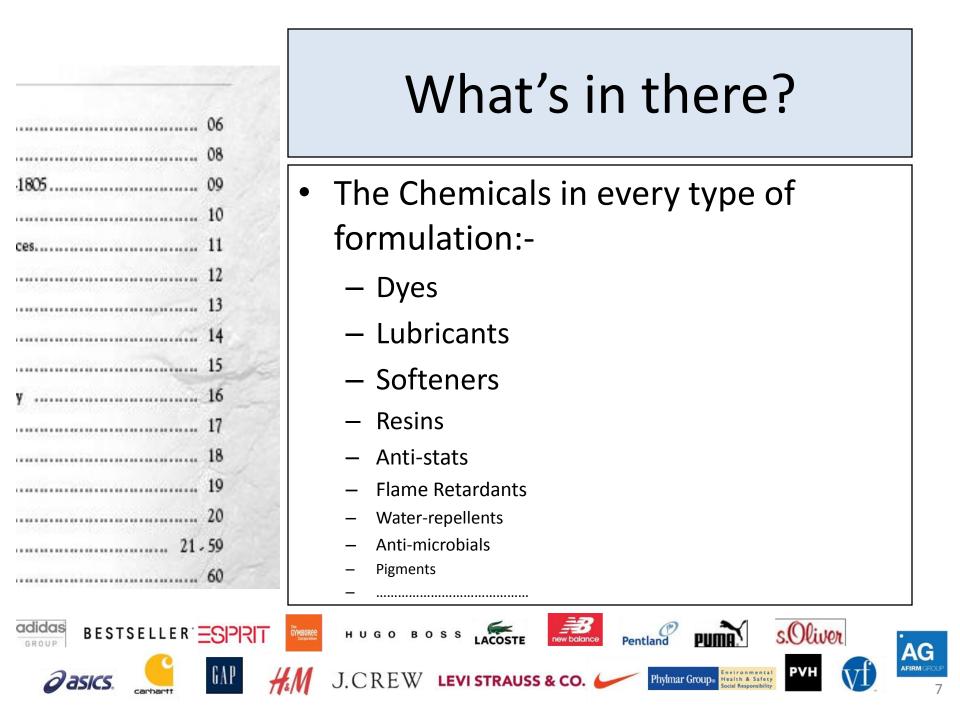
It is not a novel.....

.....it is a fabulous resource for experts in your team

The Aim

What's in there?

- Chemicals associated with textiles
- Chemicals associated with leather
- Chemicals associated with polymers
- Process Chemicals
- Adhesives / coatings
- Printing


08

10

21,50

1805

Forget the chemicals for a moment.....

.....it is a an excellent text book for understanding textile and leather manufacturing processes

Beyond RSL Compliance

- EVERYTHING you need to know about apparel and footwear chemicals
- RSL compliance
- Chemical management best practice

An Holistic Approach

 Aimed at reducing chemical consumption and chemical emissions and not just meeting Restricted Substance Standards

Environmental Impacts

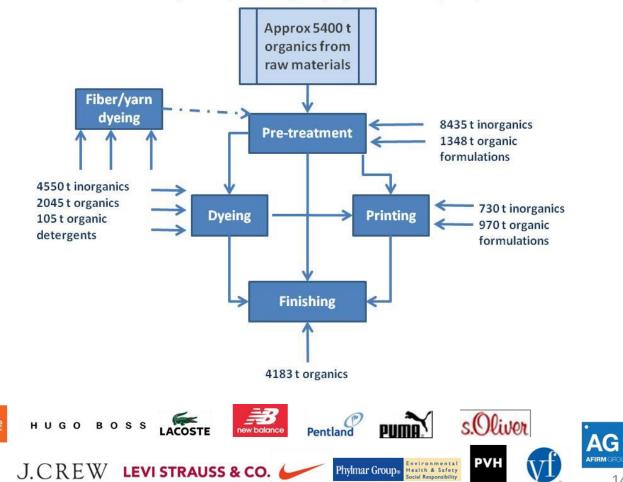
- A sense of perspective given for different products and processes
- Indicative water and energy consumption for most common processes

The Importance of Full Information

Concentration	Typical Composition of Flame Retardant Formulation
15 g/l	Polysiloxane formulation
20 g/l	Stearylurea formulation
2 g/l	Phosphoric acid ester formulation
20 g/l	Melamine resin
70 g/l	Dimethylol dihydroxy ethylene urea resin
25 g/l	Phosphoric acid
400 g/l	Alkylphosphonic acid ester
458 g/l	Water

The Importance of Full Information

Concentration	Typical Composition of Flame	Actual Composition of Substances Listed in Flame Retardant
	Retardant Formulation	Formulation
15 g/l	Polysiloxane formulation	20 %Polysiloxane with chain distribution
		5 % Oligosiloxane, cyclic
		1 % Acetic acid, technical
		3 %Fatty alcohol, ethoxylate, by-products
		3 %Glycerol, technical
		2 %Fatty amine, ethoxylate, by-products
20 g/l	Stearylurea formulation	20 % Methylolated stearylurea, technical
		3.7 % Ethanediol, technical
		3.3 % Methanol, technical
		0.5 % Diisobutoxymethane
		0.5 % Isobutanol
		0.2 % Formaldehyde
2 g/l	Phosphoric acid ester formulation	50 % Phosphoric acid butylester, technical
	Melamine resin	50 % Trimethyl(methylol)melamine ether, technical
		5 % Ethanediol, technical
		1 % Toluenesulfonic acid
		2 % Formaldehyde
		3 % Inorganic salts


carbart

Dasics

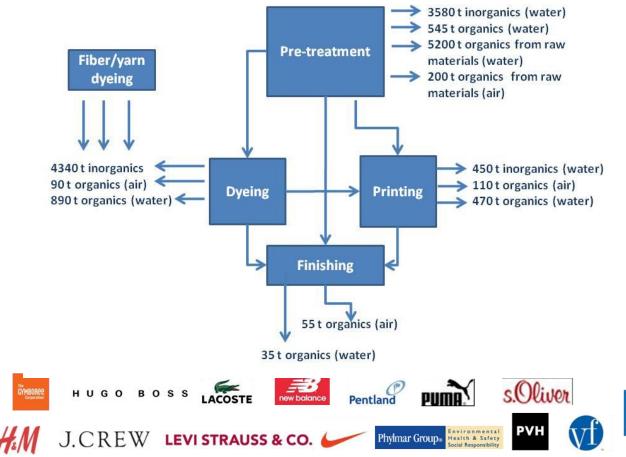
Consider Inputs

Figure 1.3: Basic Scheme of Inputs to Textile Finishing Industry (Austria)

Total inputs: 28,000 tons/year (organics and inorganics)

BESTSELLER ESPRIT

adidas


GROUP

asics

Consider Outputs

Figure 1.4: Basic Scheme of Outputs from Textile Finishing Industry (Austria)

Total emissions to water and air: about 16,000 tons/year (organics and inorganics)

AG

Inputs / Outputs

- Managing inputs
 - Manages RSL compliance
 - Manages effluent and air emissions to a large extent

	R	
	SS	
	K	
lalar		

Consider Harmful Chemicals

- Hazard •
- Understand where harmful chemicals are present
- Look for lower impact alternatives
- **Risk** •
- Learn how to minimise exposure

Consider Chemical Volumes

- Reduction of volumes used reduces exposure
- Achieved by:-
 - Removing unnecessary chemical use
 - Reducing water consumption
 - (Reducing energy consumption)

Where are Harmful Chemicals Hiding?

- Many Places
 - In fibres
 - In oils
 - In lubricants
 - In dye formulations
 - In chemical formulations
 - In adhesives
 - In coatings
- AND.....

Consider Further Reactions

- It's not just what's in the formulation
- In chemistry....

A + B = A + B + C + D + Cousin of A etc!!

Helps

earn

- Understand where you may find harmful chemicals
- Learn how to minimise use harmful chemicals
- Learn how some harmful chemicals are formed during processing

The Chemical Guidance Document

- The concept of zero harmful chemicals has zero credibility
- Makes it clear that complete avoidance of chemicals is impossible
- Chemicals are a necessary part of the modern world but they need to be understood and managed

Where can you find this information?

AFIRM website

http://afirm-

group.com/supplierrsltool.htm

